Functions

Part Two



Outline for Today

Recap from Last Time

« Where are we, again?
A Proof About Birds

e Trust me, it’s relevant. d
Assuming vs Proving

« Two different roles to watch for.
Connecting Function Types

« Relating the topics from last time.
Function Composition

« Sequencing functions together.



Recap from Last Time



Domains and Codomains

« Every function f has two sets associated with it: its
domain and its codomain.

« A function f can only be applied to elements of its
domain. For any x in the domain, f(x) belongs to the
codomain.

« We write f: A = B to indicate that fis a function
whose domain is A and whose codomain is B.

() The output of the
: function must
The function always be in the
must be defined d o but
for each element (Or— () codomain, bu
fits d : not all elements
0’ 15 comailn. of the codomain
need to be
() covered.

Domain Codomain



Involutions

« A function f: A - A from a set back to
itself is called an involution if the
tollowing first-order logic statement is
true about f:

Vx € A. f(f(x)) = x.

(“Applying f twice is equivalent to not
applying f at all.”)



Injective Functions

e Va1 € A. Vaz € A. (a1 # az - f(ai) # f(az))
e Va1 € A. Vaz € A. (f(air) = f(az) - a1 = a2)
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Review: Injective Functions



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

What does i mean for the function f fo be
injective?




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

What does i mean for the function f fo be
injective?

Vm € N. Vnz2 € N. (f(n1) = f(nz) » n1 = n2)
Vnm € N.Vnz € N. (nm1 # nz2 - f(nm) # f(n2) )




Write Two ditferent
sentences that could be
the first senfence of a
Theorem: Let f: N — N be defined as f(n) = 2n + 7. Direct Proot approach fo
Then fis injective. this proot, one tor each
Proof: of the two definitions of

Injective Functions

injective—the “assume”
step., (remember that
direct proot is for
proving theorems that
are implications—in this
case that implication is
in the definitions of
injectivity,)

What does i mean for the function f fo be
injective?

Vm € N. Vnz2 € N. (f(n1) = f(nz) » n1 = n2)
Vnm € N.Vnz € N. (nm1 # nz2 - f(nm) # f(n2) )




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

What does i mean for the function f fo be
injective?

Vm € N. Vnz2 € N. (f(n1) = f(nz) » n1 = n2)
Vnm € N.Vnz € N. (nm1 # nz2 - f(nm) # f(n2) )

Write fwo ditferent
senfences thal could be
the second sentence ot a
Direct Proot approach o
this proot, one tor each
ot the fwo definitions ot
injective—the *want—to—
show’ step. (remember
that direct proot is for
proving theorems that
are implications—in this
case that implication is
in the definitions of
injectivity,)




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

What does i mean for the function f fo be
injective?

Vm € N. Vnz2 € N. (f(n1) = f(nz) » n1 = n2)




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

What does i mean for the function f fo be
injective?

Vm € N. Vnz2 € N. (f(n1) = f(nz) » n1 = n2)

Theretore, we'll pick arbifrary ni, n2 € N,
assume f(ni) = f(n2), Then prove that n: = n2,




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

Vni € N. Vnz2 € N.

pick arbitrary ni, n2 €N,




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

f(m) = f(n2) -

assume f(ni) = f(n2),




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof:

= N1 = N2

then prove thal ni = n2,




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(n2). We
will prove that n1 = na.



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(n2). We
will prove that n1 = na.

Since f(ni1) = f(nz2), we see that
2ni1+ 7 =2n2+ 7.



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(n2). We
will prove that n1 = na.

Since f(ni1) = f(nz2), we see that

2m+ 7 =2n2+ 7.
This in turn means that

2n1 = 2n2



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(n2). We
will prove that n1 = na.

Since f(ni1) = f(nz2), we see that

2m+ 7 =2n2+ 7.
This in turn means that

2n1 = 2no2,

SO N1 = nz, as required.



Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(nz2). We
will prove that n1 = na.

Since f(ni1) = f(nz2), we see that

2m+ 7 =2n2+ 7.
This in turn means that

2n1 = 2no2,

SO N1 = n2, as required. N

Good exercise: Repeat fThis
proot using the other
definition of injectivity:




Injective Functions

Theorem: Let f: N - N be defined as f(n) = 2n + 7.
Then fis injective.

Proof: Consider any ni, n2 € N where f(n1) = f(nz2). We
will prove that n1 = na.

Since f(ni1) = f(nz2), we see that

2m+ 7 =2n2+ 7.
This in turn means that

2Nn1 = 202

. 11 Important style rule 1!
SO M1 = nz, as required. W This proof contains no
first—order logic syntax
(quantifiers, connectives, efc.),
It's writfen in plain English,

just as usual,




Another Class of Functions
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Surjective Functions

« A function f: A — B is called surjective (or

onto) if this first-order logic statement is true
about f:

Vb e B.3dacA.f(a) =b

(“For every output, there's an
input that produces it.”)

« A function with this property is called a
surjection.

« How does this compare to our first rule of
functions?



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof:



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof:

What does it mean for ¥ fo be surjective?
VveR.IXER. f(X) =y

Theretore, we'll choose an arbifrary y € R,

then prove Thal there is some x € R where
fix) = y.




Surjective Functions

Theorem: Let f: R = R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof:

What does it mean for ¥ fo be surjective?
VvER. Ix € R. f(x) =y

Thevetore, we'll choose an arbifrary y € R,

Then prove Thal There is some x € R where
fx) = y.




Surjective Functions

Theorem: Let f: R = R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof:

What does it mean for ¥ fo be surjective?
VveER.AIXER. f(x) =y

Theretore, we'll choose an arbifrary y € R,

then prove Thal there is some x € R where
fix) =y.




Surjective Functions

Theorem: Let f: R = R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof:

What does it mean for ¥ fo be surjective?
VyveR. Ixe R. f(xX) =y

Theretore, we'll choose an arbifrary y € R,
Then prove Thal There is some x € R where

fx) = y.




Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof:



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y € R.



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y € R. We will prove that there is a
choice of x € R such that f(x) = y.



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y € R. We will prove that there is a
choice of x € R such that f(x) = y.

Letx=y/ 2.



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y € R. We will prove that there is a
choice of x € R such that f(x) = y.

Let x = y/ 2. Then we see that
fx)=Afy/?2)



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y € R. We will prove that there is a
choice of x € R such that f(x) = y.

Let x = y/ 2. Then we see that
fx) =fly/2)=2y/2



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y € R. We will prove that there is a
choice of x € R such that f(x) = y.

Let x = y/ 2. Then we see that
fX)=RAy/2)=2y/2=y.



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y € R. We will prove that there is a
choice of x € R such that f(x) = y.

Let x = y/ 2. Then we see that

fx)=fy/2)=2y/2=y.
So f(x) = y, as required.



Surjective Functions

Theorem: Let f: R — R be defined as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y € R. We will prove that there is a
choice of x € R such that f(x) = y.

Let x = y/ 2. Then we see that

fx)=fy/2)=2y/2=y.
So f(x) = y, as required. W

11 Important style rule 1
This proof contfains no
first—order logic syntax

(guantifiers, connectives, efc.).

It's writfen in plain English,

just as usual,




To prove that
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—-B

Assume A is true, then
prove B is true.

ANMNB

Prove A. Then prove B.

AV DB

Either prove —A — B or
prove —B — A.
(Why does this work?)

Ao B

Prove A - B and B — A.

Simplify the negation, then
consult this table on the result.

Pop Quiz! N
Which row of this
proof techniques
table did we use for
for that proof? 4




A Proof About Birds



Theorem: It all birds can fly,
then all herons can fly.



Theorem: If all birds can fly, then all herons
can fly.

Given the predicates

Bird(b), which says b is a bird;
Heron(h), which says h is a heron; and
CanFly(x), which says x can fly,

translate the theorem into first-order logic.

Go to
PollEv.com/cs103spr25




Theorem: If all birds can fly, then all herons
can fly.

Given the predicates

Bird(b), which says b is a bird;
Heron(h), which says h is a heron; and
CanFly(x), which says x can fly,

translate the theorem into first-order logic.

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

ki ¥

All birds All herons
can fly can fly




To prove that
this is true...

Have the reader pick an

VX. A arbitrary x. We then prove A is
true for that choice of x.

Find an x where A is true.

HX. A Then prove that A is true for
that specific choice of x.

Assume A is true, then
A — B prove B is true.

A N B Prove A. Then prove B.

Either prove —-A — B or

A V B prove =B - A.

(Why does this work?)

A e B Prove A — B and B - A.

—_ A Simplify the negation, then
consult this table on the result.




To prove that
this is true...

Have the reader pick an
VX. A arbitrary x. We then prove A is
true for that choice of x.

Find an x where A is true.
HX. A Then prove that A is true for
that specific choice of x.

Assume A is true, then
A — B prove B is true.

A NB Prove A. Then prove B.

Either prove —-A — B or

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ ¥

All birds All herons
can fly can fly




Assume A is true, then
A - B prove B is true.

(Vb. (Bird(b) — CanFly(b))) - (Vh. (Heron(h) - CanFly(h)))

Y ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Which makes more sense as the
next step in this proof?

Go to
PollEv.com/cs103spr25

1. Consider an arbitrary bird b.
2. Consider an arbitrary heron h.

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

1. Consider an arbitrary bird b.

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary bird b.

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary bird b. Since b is a
bird, b can fly.

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary bird b. Since b is a
bird, b can fly. [ and now we’re stuck! we
are interested in herons, but b might not
be one. It could be a hummingbird, for
example! ]

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Which makes more sense as the
next step in this proof?

1. Consider an arbitrary bird b.
2. Consider an arbitrary heron h.

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

2. Consider an arbitrary heron h.

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary heron h.

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary heron h. We will
show that h can fly.

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary heron h. We will
show that h can fly. To do so, note that
since h is a heron we know h is a bird.

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary heron h. We will
show that h can fly. To do so, note that
since h is a heron we know h is a bird.
Therefore, by our earlier assumption, h

can fly.

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary heron h. We will
show that h can fly. To do so, note that
since h is a heron we know h is a bird.
Therefore, by our earlier assumption, h

can fly. B

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ ¥

All birds All herons
can fly can fly




Theorem: If all birds can fly, then all herons
can fly.

Proof: Assume that all birds can fly. We will
show that all herons can fly.

Consider an arbitrary heron h. We will
show that h can fly. To do so, note that
since h is a heron we know h is a bird.
Therefore, by our earlier assumption, h

can fly. B

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ ¥

We never introduce a We introduce a variable h
variable b. almost immediately.




Proving vs. Assuming

* In the context of a proof, you will need to
assume some statements and prove others.

 Here, we assumed all birds can fly.
 Here, we proved all herons can fly.

« Statements behave differently based on
whether you're assuming or proving them.

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ Y

We never introduce a We introduce a variable h
variable b. almost immediately.




Proving vs. Assuming

 To prove the universally-quantified statement
Vx. P(x)

we introduce a new variable x representing some
arbitrarily-chosen value.

« Then, we prove that P(x) is true for that variable x.

 That’s why we introduced a variable h in this proof
representing a heron.

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ Y

We never introduce a We introduce a variable h
variable b. almost immediately.




Proving vs. Assuming

« If we assume the statement
Vx. P(x)
we do not introduce a variable x.

« Rather, if we find a relevant value z somewhere else in
the prootf, we can conclude that P(z) is true.

 That’s why we didn’t introduce a variable b in our
proof, and why we concluded that h, our heron, can fly.

(Vb. (Bird(b) — CanFly(b))) — (VYh. (Heron(h) — CanFly(h)))

¥ Y

We never introduce a We introduce a variable h
variable b. almost immediately.




To prove that
this is true...

Have the reader pick an

VX. A arbitrary x. We then prove A is
true for that choice of x.

Find an x where A is true.

HX. A Then prove that A is true for
that specific choice of x.

Assume A is true, then
A — B prove B is true.

A N B Prove A. Then prove B.

Either prove —-A — B or

A V B prove =B - A.

(Why does this work?)

A e B Prove A — B and B - A.

—_ A Simplify the negation, then
consult this table on the result.




To prove that
this is true...

If you assume
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—-B

Assume A is true, then
prove B is true.

ANMNB

Prove A. Then prove B.

AV B

Either prove —-A — B or
prove B — A.
(Why does this work?)

Ao B

Prove A - B and B — A.

Simplify the negation, then
consult this table on the result.




To prove that
this is true...

If you assume
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

Initially, do nothing. Once you
find a z through other means,
you can state it has property A.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

A—-B

Assume A is true, then
prove B is true.

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

ANMNB

Prove A. Then prove B.

AV B

Either prove —-A — B or
prove B — A.
(Why does this work?)

Ao B

Prove A - B and B — A.

Simplify the negation, then
consult this table on the result.




To prove that
this is true...

If you assume
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

Initially, do nothing. Once you
find a z through other means,
you can state it has property A.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

Introduce a variable
x into your proof that
has property A.

A—-B

Assume A is true, then
prove B is true.

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

ANMNB

Prove A. Then prove B.

Assume A. Then assume B.

AV B

Either prove —-A — B or
prove B — A.
(Why does this work?)

Ao B

Prove A - B and B — A.

Simplify the negation, then
consult this table on the result.




To prove that
this is true...

If you assume
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

Initially, do nothing. Once you
find a z through other means,
you can state it has property A.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

Introduce a variable
x into your proof that
has property A.

A—-B

Assume A is true, then
prove B is true.

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

ANMNB

Prove A. Then prove B.

Assume A. Then assume B.

AV B

Either prove —-A — B or
prove B — A.
(Why does this work?)

Consider two cases.
Case 1: A is true.
Case 2: B is true.

Ao B

Prove A - B and B — A.

Assume A - B and B - A.

Simplify the negation, then
consult this table on the result.

Simplify the negation, then
consult this table on the result.




Connecting Function Types



Types of Functions

« We've seen three special types of
functions:

e involutions, functions that undo
themselves:

* injections, functions where different inputs
go to different outputs; and

* surjections, functions that cover their
whole codomain.

* Question: How do these three classes of
functions relate to one another?



Theorem: For any function f: A -2 A,
if fis an involution, then fis surjective.



(Vx €A. f(f(x)) =x) - (VbeA.Ja€A. fla)=Db)

¥ ¥

fis an fis
involution. surjective.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



(Vx €A. f(f(x)) =x) - (VbeA.Ja€A. fla)=Db)

¥ ¥

Assume this. Prove this.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



(Vx €A. f(f(x)) =x) - (VbeA.Ja€A.fla)=Db)

Y i

Assume this. Prove this.

(Vb. (Bird(b) —» CanFly(b))) — (VYh. (Heron(h) —» CanFly(h)))

¥ Y

Assume this. Prove this.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



(Vx € A. f(f(9) = x)

T

Assume this.

Since we'vre assuming this, we

aren’t going fo pick a specitic
choice of x vight now, Instead,
we're qgoing To keep an eye
out for something fo
apply This fact fo.

Proof Outline

1. Assume fis an involution.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



(Vb € A. 3a € A. fla) = b)

We've said that we need
to prove this
statement, How do we

do that?

T

Prove this.

Proof Outline

1. Assume fis an involution.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



— T __ 7
Thevg'; a universal Prove this.
guantitier up front,
Since we're proving
this, we’ll pick an
arbitrary b e A, Proof Outline

1. Assume fis an involution.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



— T __ 7
Thevg'; a universal Prove this.
guantitier up front,
Since we're proving
this, we’ll pick an
arbitrary b e A, Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



Ja € A. fla) = b

— T __
Now, we hif an Prove this.
existential quantifier,
Since we’re proving This,
we need To find a choice
of a € A where this Proof Outline

is True,

1. Assume fis an involution.
2. Pick an arbitrary b € A.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



Now, we hit an
existential quantifier,
Since we're proving This,
we need To find a choice
of a € A where this

is True,

Ja € A. fla) = b

- °

Prove this.

WN =

Proof Outline

. Assume f'is an involution.

Pick an arbitrary b € A.
Give a choice of a € A where

fla) = b.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.

Theorem: For any function f: A - A,
if fis an involution, then fis surjective.



Theorem: For any function f: A - A, if fis an
involution, then fis surjective.

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any function f: A - A, if fis an
involution, then fis surjective.

Proof:

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any function f: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A.

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any function f: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A. We will prove
that fis surjective.

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any function f: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A. We will prove

that f is surjective. To do so, pick an arbitrary
b eA.

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any function f: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A. We will prove
that f is surjective. To do so, pick an arbitrary

b € A. We need to show that thereisana € A
where f(a) = b.

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any function f: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A. We will prove
that f is surjective. To do so, pick an arbitrary
b € A. We need to show that thereisana € A
where f(a) = b.

Specifically, pick a = f(b).

Proof Outline

. Assume f'is an involution.
. Pick an arbitrary b € A.
Give a choice of a € A where

fla) = b.

WA=




Theorem: For any function f: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A. We will prove
that f is surjective. To do so, pick an arbitrary

b € A. We need to show that thereisana € A
where f(a) = b.

Specifically, pick a = f(b). This means that

fla) = f(f(b)), and since fis an involution we know
that f(fib)) = b.

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any function f: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A. We will prove
that f is surjective. To do so, pick an arbitrary

b € A. We need to show that thereisana € A
where f(a) = b.

Specifically, pick a = f(b). This means that
fla) = f(f(b)), and since fis an involution we know
that f(f(b)) = b. Putting this together, we see that
fla) = b, which is what we needed to show.

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any function f: A - A, if fis an
involution, then fis surjective.

Proof: Pick any involution f: A - A. We will prove
that f is surjective. To do so, pick an arbitrary

b € A. We need to show that thereisana € A
where f(a) = b.

Specifically, pick a = f(b). This means that

fla) = f(f(b)), and since fis an involution we know
that f(f(b)) = b. Putting this together, we see that
fla) = b, which is what we needed to show. B

Proof Outline

1. Assume fis an involution.
2. Pick an arbitrary b € A.
3. Give a choice of a € A where

fla) = b.




Theorem: For any function f: A -2 A,
if fis an involution, then fis injective.



(Vx€A. f(f(x)) =x) > (Var€A.Vaz € A. (a1 # a2 - f(a1) # f(az))

N — g

¥ T

fis an fis
involution. injective.

Theorem: For any function f: A - A,
if fis an involution, then fis injective.



(Vx€A. f(f(x)) =x) > (Var€A.Vaz € A. (a1 # a2 - f(a1) # f(az))

N — g

¥ ¥

Assume Prove
this. this.

Theorem: For any function f: A - A,
if fis an involution, then fis injective.



(Vx€A. f(f(x)) =x)= (Var€A.Vaz € A. (a1 # a2 - f(a:1) # f(az))

— e

¥ ¥

Assume Prove
this. this.

(Vb. (Bird(b) - CanFly(b))) - (VYh. (Heron(h) - CanFly(h)))

¥ i

Assume this. Prove this.

Theorem: For any function f: A - A,
if fis an involution, then fis injective.



(Vx €A. f(f(x)) =x)

T

Assume
this.

Since we're assuming This, we

aren’t going 1o pick a specific
choice of x right now. Insfead,
we're going to keep an euye
out for something fo
apply this Tact to.

Proof Outline

1. Assume fis an involution.

Theorem: For any function f: A - A,
if fis an involution, then fis injective.



(Var € A. Va2 €A. (a1 # az - fla1) # f(az2))

We need ;O Erov? This \:avT. Prove
What does That mean® fhis
Proof Outline

1. Assume fis an involution.

Theorem: For any function f: A - A,
if fis an involution, then fis injective.



Vai€A.Vaz €A.

Since we'vre proving something |
universally—guantitied, we’ll Prove
pick some values arbitrarily, this.
Proof Outline

1. Assume fis an involution.

Theorem: For any function f: A - A,
if fis an involution, then fis injective.



Vai€A.Vaz €A.

Since we'vre proving something |
universally—guantitied, we’ll Prove
pick some values arbitrarily, this.
Proof Outline

1. Assume fis an involution.
2. Pick arbitrary a1, az € A.

Theorem: For any function f: A - A,
if fis an involution, then fis injective.



ai # az — f(ax) # f(az)

We now need o prove this
implication, Bul we know
how To do that: We assume
the antecedent and prove
The consequent,

Prove
this.

Proof Outline

1. Assume fis an involution.
2. Pick arbitrary ai, a2 € A.

Theorem: For any function f: A - A,
if fis an involution, then fis injective.



ai # az — f(ax) # f(az)

We now need o prove this
implication, Bul we know
how To do that: We assume
the antecedent and prove
The consequent,

Prove
this.

Proof Outline

1. Assume fis an involution.
2. Pick arbitrary ai, az € A such
that a1 # a-.
. Prove f(ai) # f(a2).

Theorem: For any function f: A - A,
if fis an involution, then fis injective.



Proof Outline

1. Assume fis an involution.
2. Pick arbitrary ai, az € A such
that a1 # a.

3. Prove f(ai) # flaz).

Theorem: For any function f: A - A,
if fis an involution, then fis injective.



Theorem: For any function f: A - A, if fis an
involution, then fis injective.

Proof Outline

1. Assume fis an involution.
2. Pick arbitrary ai, az € A such
that a1 # a-.

. Prove f{ai) # flaz).




Theorem: For any function f: A - A, if fis an
involution, then fis injective.

Proof:

Proof Outline

1. Assume fis an involution.
2. Pick arbitrary ai, az € A such
that a1 # a-.

. Prove f{ai) # flaz).




Theorem: For any function f: A - A, if fis an
involution, then fis injective.

Proof: Consider any function f: A - A that’s an
involution.

Proof Outline

1. Assume fis an involution.
2. Pick arbitrary ai, az € A such
that a1 # a-.

. Prove f{ai) # flaz).




Theorem: For any function f: A - A, if fis an
involution, then fis injective.

Proof: Consider any function f: A - A that’s an
involution. We will prove that fis injective.

Proof Outline

1. Assume fis an involution.
2. Pick arbitrary ai, az € A such
that a1 # a-.

. Prove f{ai) # flaz).




Theorem: For any function f: A - A, if fis an
involution, then fis injective.

Proof: Consider any function f: A - A that’s an
involution. We will prove that fis injective. To do
so, choose any ai, az € A where a: # a.

Proof Outline

1. Assume fis an involution.
2. Pick arbitrary ai, az € A such
that a1 # a-.

. Prove f{ai) # flaz).




Theorem: For any function f: A - A, if fis an
involution, then fis injective.

Proof: Consider any function f: A - A that’s an
involution. We will prove that fis injective. To do

so, choose any ai, az € A where a: # a2. We need
to show that f(a1) # f(az).

Proof Outline

1. Assume fis an involution.
2. Pick arbitrary ai, az € A such
that a1 # a-.

. Prove f{ai) # flaz).




Theorem: For any function f: A - A, if fis an
involution, then fis injective.

Proof: Consider any function f: A - A that’s an
involution. We will prove that fis injective. To do

so, choose any ai, az € A where a: # a2. We need
to show that f(a1) # f(az).

We’ll proceed by contradiction.

Proof Outline

1. Assume fis an involution.
2. Pick arbitrary ai, az € A such
that a1 # a-.

. Prove f{ai) # flaz).




Theorem: For any function f: A - A, if fis an
involution, then fis injective.

Proof: Consider any function f: A - A that’s an
involution. We will prove that fis injective. To do

so, choose any ai, az € A where a: # a2. We need
to show that f(a1) # f(az).

We’ll proceed by contradiction. Suppose that
fla1) = fla2).

Proof Outline

1. Assume fis an involution.
2. Pick arbitrary ai, az € A such
that a1 # a-.

. Prove f{ai) # flaz).




Theorem: For any function f: A - A, if fis an
involution, then fis injective.

Proof: Consider any function f: A - A that’s an
involution. We will prove that fis injective. To do

so, choose any ai, az € A where a: # a2. We need
to show that f(a1) # f(az).

We’ll proceed by contradiction. Suppose that

flai) = flaz). This means f(f(ai)) = f(f(az)), which in
turn tells us a: = az because fis an involution.

Proof Outline

1. Assume fis an involution.
2. Pick arbitrary ai, az € A such
that a1 # a-.

. Prove f{ai) # flaz).




Theorem: For any function f: A - A, if fis an
involution, then fis injective.

Proof: Consider any function f: A - A that’s an
involution. We will prove that fis injective. To do

so, choose any ai, az € A where a: # a2. We need
to show that f(a1) # f(az).

We’ll proceed by contradiction. Suppose that

flai) = flaz). This means f(f(ai)) = f(f(az)), which in
turn tells us a: = az because fis an involution. But
that’s impossible, since a1 # a-.

Proof Outline

1. Assume fis an involution.
2. Pick arbitrary ai, az € A such
that a1 # a-.

. Prove f{ai) # flaz).




Theorem: For any function f: A - A, if fis an
involution, then fis injective.

Proof: Consider any function f: A - A that’s an
involution. We will prove that fis injective. To do
so, choose any ai, az € A where a: # a2. We need
to show that f(a1) # f(az).

We’ll proceed by contradiction. Suppose that

flai) = flaz). This means f(f(ai)) = f(f(az)), which in
turn tells us a: = az because fis an involution. But
that’s impossible, since a1 # a-.

We’ve reached a contradiction, so our assumption
was wrong.

Proof Outline

1. Assume fis an involution.
2. Pick arbitrary ai1, az € A such
that a1 # a-.
. Prove f{ai) # flaz).




Theorem: For any function f: A - A, if fis an
involution, then fis injective.

Proof: Consider any function f: A - A that’s an
involution. We will prove that fis injective. To do
so, choose any ai, az € A where a: # a2. We need
to show that f(a1) # f(az).

We’ll proceed by contradiction. Suppose that

flai) = flaz). This means f(f(ai)) = f(f(az)), which in
turn tells us a: = az because fis an involution. But
that’s impossible, since a1 # a-.

We’ve reached a contradiction, so our assumption
was wrong. Therefore,

Proof Outline
we see that f(a1) # flaz), f
as requjred_. 1. Assume fis an involution.
2. Pick arbitrary ai, az € A such
that a1 # a-.
. Prove f{ai) # flaz).




Theorem: For any function f: A - A, if fis an
involution, then fis injective.

Proof: Consider any function f: A - A that’s an
involution. We will prove that fis injective. To do
so, choose any ai, az € A where a: # a2. We need
to show that f(a1) # f(az).

We’ll proceed by contradiction. Suppose that

flai) = flaz). This means f(f(ai)) = f(f(az)), which in
turn tells us a: = az because fis an involution. But
that’s impossible, since a1 # a-.

We’ve reached a contradiction, so our assumption
was wrong. Therefore,

Proof Outline
we see that f(a1) # flaz), f
as requjred_. B 1. Assume fis an involution.
2. Pick arbitrary ai, az € A such
that a1 # a-.
. Prove f{ai) # flaz).




Function Composition



f : People - Places g : Places - Prices

» Cupertino, CA

San Francisco

Redding, CA

Utqgiagvik, AK

Palo Alto, CA

People Places Prices
h : People - Prices

h(x) = g(f(x))



Function Composition

 Suppose that we have two functions
f:A->Bandg:B-C.

« Notice that the codomain of fis the

domain of g. This means that we can use

outputs from f as inputs to g.

)
- f

-

g(f(X))>




Function Composition
 Suppose that we have two functions f: A - B and g
: B - C.

« The composition of f and g, denoted g - f, is a
function where

The name of the function is g - f.
* g-o f: A - C, and When we apply it to an input x,
we write (g ° f)(x). I don't know

* (g ° Nx) = g(fix)). why, but that's what we do.

« A few things to notice:

« The domain of g - fis the domain of f. Its codomain
is the codomain of g.

« Even though the composition is written g - f, when
evaluating (g ° f)(x), the function fis evaluated first.



Properties of Composition



Theorem: If f: A — B is an injection and g :
B - C is an injection, then the function g ° f
: A - (C 1s an injection.



Organizing Our Thoughts



Theorem: If f : A - B is an injection and
g : B - C is an injection, then the function

ge°f:A - Cisan injection.

What We’re Assuming

f:A - B is an injection.

Vx EA.VyEA. (x=2y—

)

fx) = fly)

g : B — C is an injection.

Vxe€B.VyeEB. (x#y—-

)

gx) # g(y)

We'vre assuming These
universally—guantified
statements, so we won't
infroduce any variables
for whal’s here,

What We Need to Prove

g ° fis an injection.

Var € A. Va2 € A. (a1 # a2z —
| (g ° Nax) # (g ° Haz)

We need fo prove
this universally—
guantified statement,
So let’s introduce
arbitrarily—chosen

values.,




Theorem: If f : A - B is an injection and
g : B - C is an injection, then the function
ge° f:A - Cis an injection.

What We’re Assuming

f:A - B is an injection.

VxeA.VyeA. x=y—-
| ) = fly)

g : B — C is an injection.

VxeB.VyeB. (x#y~-
) gix) = g(y)

ai € A is arbitrarily-chosen.

dz € A is arbitrarily-chosen.

What We Need to Prove

g ° fis an injection.

Vai € A. Va2 € A. (a1 # a2z -
| (g ° Nax) # (g ° Haz)

We need fo prove
this universally—
guantified statement,
So let’s introduce
arbitrarily—chosen

values,




Theorem: If f : A - B is an injection and
g : B - C is an injection, then the function
ge° f:A - Cis an injection.

What We’re Assuming

f:A - B is an injection.

Vx eA.Vy€eEA. x=2y—
| fx) # fly)

g : B — C is an injection.

VxeB.VyeB. (x=#y-
) gx) = gy)

dai € A is arbitrarily-chosen.

az € A is arbitrarily-chosen.

ai # dz

What We Need to Prove

g ° fis an injection.

(a1 # a2 —

| (g ° N(a) # (g ° fH(az)

Now we're looking af
an implication, Let’s
assume The anfecedent
and prove the consequent,




Theorem: If f : A - B is an injection and
g : B - C is an injection, then the function
ge° f:A - Cis an injection.

What We’re Assuming

f:A - B is an injection.

Vx eA.VyeA. x=#y~-
| fx) # fly)

g : B — C is an injection.

VxeB.VyeB. (x#y~-
) gx) = g(y)

dai € A is arbitrarily-chosen.

dz € A is arbitrarily-chosen.

ai # dz

What We Need to Prove

g ° fis an injection.

(g ° N(a) # (g ° fH(az)

Let’s write This out
separately and simplity
Things a bit,




Theorem: If f : A - B is an injection and
g : B - C is an injection, then the function
ge° f:A - Cis an injection.

What We’re Assuming

f:A - B is an injection.

Vx eA.VyeA. x=#y~-
| fi) = fy)

g : B - C 1s an injection.

VxeB.VyeB. (x#y~-
) gx) = g(y)

dai € A is arbitrarily-chosen.

dz € A is arbitrarily-chosen.

ai = dz

What We Need to Prove

(g ° Hlar) = (g ° NHaz)



Theorem: If f : A - B is an injection and
g : B - C is an injection, then the function
ge° f:A - Cis an injection.

What We’re Assuming What We Need to Prove

f:A - B is an injection.

Vx eA.VyeA. x=#y~-
| fi) = fy)

g : B = C is an injection. d(flar)) # g(flaz))

VxeB.VyeB. (x#y~-
) gx) = g(y)

dai € A is arbitrarily-chosen.

dz € A is arbitrarily-chosen.

ai = dz




Theorem: If f : A - B is an injection and
g : B - C is an injection, then the function
ge° f:A - Cis an injection.

What We’re Assuming

f:A - B is an injection.

Vx eA.VyeA. x=#y~-

| fx) = fly)

g : B — C is an injection.

VxeB.VyeB. (x#y~-

) gx) # g(y)

dai € A is arbitrarily-chosen.

dz € A is arbitrarily-chosen.

ai # dz

What We Need to Prove

g(fla1)) # g(f(a2))

W Fa %ﬂm”
@> <y) B
= flad— g(fa:)



Theorem: If f: A - B is an injection and g : B - C is an
injection, then the function g o f: A — C is also an
injection.

: f(a1) )Q
@> <§> B
“ f(a2) g(f(az))



Theorem: If f: A - B is an injection and g : B - C is an
injection, then the function g o f: A — C is also an
injection.

Proof:

: f(a1) )Q
@> <§> B
“ f(a2) g(f(az))



Theorem: If f: A - B is an injection and g : B - C is an
injection, then the function g o f: A — C is also an
injection.

Proof: Let f: A - B and g : B — C be arbitrary injections.

: f(a1) >‘\
@> Py) B
“ f(a2) g(f(az))



Theorem: If f: A - B is an injection and g : B - C is an
injection, then the function g o f: A — C is also an
injection.

Proof: Let f: A - B and g : B = C be arbitrary injections. We
will prove that the function g - f: A — C is also injective.

: f(a1) >‘\
@> Py) B
“ f(a2) g(f(az))



Theorem: If f: A - B is an injection and g : B - C is an
injection, then the function g o f: A — C is also an
injection.

Proof: Let f: A - B and g : B = C be arbitrary injections. We
will prove that the function g - f: A — C is also injective.
To do so, consider any a1, az € A where ai: # a.

az f(az) S



Theorem: If f: A - B is an injection and g : B — C is an
injection, then the function g - f: A — C is also an
injection.

Proof: Let f: A - B and g : B = C be arbitrary injections. We

will prove that the function g - f: A — C is also injective.
To do so, consider any ai, az € A where ai: # az. We will

prove that (g ° f)(a1) # (g ° f)(az).

: f(a1) >‘\
@> Py) B
“ f(az) g(f(az))



Theorem: If f: A - B is an injection and g : B - C is an
injection, then the function g o f: A — C is also an
injection.

Proof: Let f: A - B and g : B = C be arbitrary injections. We
will prove that the function g - f: A — C is also injective.
To do so, consider any ai, az € A where ai: # az. We will
prove that (g ° f)(a1) # (g ° f)(az). Equivalently, we need to
show that g(f(ai)) # g(f(az2)).

: f(a1) >‘\
@> Py) B
“ f(a2) g(f(az))



Theorem: If f: A - B is an injection and g : B - C is an
injection, then the function g o f: A — C is also an
injection.

Proof: Let f: A - B and g : B = C be arbitrary injections. We
will prove that the function g - f: A — C is also injective.
To do so, consider any ai, az € A where ai: # az. We will
prove that (g ° f)(a1) # (g ° f)(az). Equivalently, we need to
show that g(f(ai)) # g(f(az2)).

Since fis injective and a: # az, we see that f(ai) # f(az).

g(f(a1))

a f(a1) >‘\
@> Py) B
“ f(az) g(f(az))



Theorem: If f: A - B is an injection and g : B - C is an
injection, then the function g o f: A — C is also an
injection.

Proof: Let f: A - B and g : B = C be arbitrary injections. We
will prove that the function g - f: A — C is also injective.
To do so, consider any ai, az € A where ai: # az. We will
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Then, since g is injective and f(a1) # f(az), we see that
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Major Ideas From Today

Statements behave differently based on whether
you're assuming or proving them.

When you assume a universally-quantified
statement, initially, do nothing. Instead, keep an
eye out for a place to apply the statement more
specifically.

When you prove a universally-quantified
statement, pick an arbitrary value and try to prove
it has the needed property.

As always: try concrete examples, draw pictures,
etc. before you dive into writing a proof.



To prove that
this is true...

If you assume
this is true...

Vx. A

Have the reader pick an
arbitrary x. We then prove A is
true for that choice of x.

Initially, do nothing. Once you
find a z through other means,
you can state it has property A.

dx. A

Find an x where A is true.
Then prove that A is true for
that specific choice of x.

Introduce a variable
x into your proof that
has property A.

A—-B

Assume A is true, then
prove B is true.

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

ANMNB

Prove A. Then prove B.

Assume A. Then assume B.

AV B

Either prove —-A — B or
prove B — A.
(Why does this work?)

Consider two cases.
Case 1: A is true.
Case 2: B is true.

Ao B

Prove A - B and B — A.

Assume A - B and B - A.

Simplify the negation, then
consult this table on the result.

Simplify the negation, then
consult this table on the result.




Next Time

 Cardinality Revisited

 Formalizing our definitions.
« The Nature of Infinity

 Infinity is more interesting than it looks!
« Cantor’s Theorem Revisited

 Formally proving a major result.



Extra Slides

(The following is a proof of a theorem just like the
one we just did with injection, but with surjection.)



Theorem: If f : A - B is a surjection and
g : B — C is a surjection, then the function
ge°f:A - Cisa surjection.



Theorem: If f: A - B is surjective and g : B — C is surjective,
then g - f: A — C is also surjective.
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is some a € A such that (g » f)(a) = c.
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g(fla)) = g(b) = c,
which is what we needed to show.




Theorem: If f: A - B is surjective and g : B — C is surjective,
then g - f: A — C is also surjective.

Proof: Let f: A - B and g : B = C be arbitrary surjections.
We will prove that the function g - f: A = C is also
surjective. To do so, we will prove that for any ¢ € C, there

is some a € A such that (g - f)(a) = c¢. Equivalently, we
will prove that for any ¢ € C, there is some a € A such that

g(fla)) = c.

Consider any ¢ € C. Since g : B - C is surjective, there is
some b € B such that g(b) = c¢. Similarly, since f: A - B is
surjective, there is some a € A such that f(a) = b. Then

we see that

g(fla)) = g(b) = c,
which is what we needed to show.




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168

