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Part Two



  

Outline for Today

● Recap from Last Time
● Where are we, again?

● A Proof About Birds
● Trust me, it’s relevant. �

● Assuming vs Proving
● Two diferent roles to watch for.

● Connecting Function Types
● Relating the topics from last time.

● Function Composition
● Sequencing functions together.



  

Recap from Last Time



  

Domains and Codomains

● Every function f has two sets associated with it: its
domain and its codomain.

● A function f can only be applied to elements of its
domain. For any x in the domain, f(x) belongs to the
codomain.

● We write f : A → B to indicate that f is a function
whose domain is A and whose codomain is B.

Domain Codomain

The function
must be defned
for each element

of its domain.

The function
must be defned
for each element

of its domain.

The output of the
function must

always be in the
codomain, but

not all elements
of the codomain

need to be
covered.

The output of the
function must

always be in the
codomain, but

not all elements
of the codomain

need to be
covered.



  

Involutions

● A function f : A → A from a set back to
itself is called an involution if the
following frst-order logic statement is
true about f:

∀x ∈ A. f(f(x)) = x.
(“Applying f twice is equivalent to not

applying f at all.”)
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Injective Functions
● ∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ → f(a₁) ≠ f(a₂))
● ∀a₁ ∈ A. ∀a₂ ∈ A. (f(a₁) = f(a₂) → a₁ = a₂)



  

Review: Injective Functions



  

Injective Functions

Theorem: Let f : ℕ → ℕ be defned as f(n) = 2n + 7.
Then f is injective.

Proof: Consider any n₀, n₁ ∈ ℕ where f(n₀) = f(n₁). We
will prove that n₀ = n₁.

Since f(n₀) = f(n₁), we see that

2n₀ + 7 = 2n₁ + 7.
This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■ 
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This in turn means that

2n₀ = 2n₁,

so n₀ = n₁, as required. ■ 

What does it mean for the function f to be
injective?

∀n₀ ∈ ℕ. ∀n₁ ∈ ℕ. ( f(n₀) = f(n₁) → n₀ = n₁ )
 

∀n₀ ∈ ℕ. ∀n₁ ∈ ℕ. ( n₀ ≠ n₁ → f(n₀) ≠ f(n₁) )

Therefore, we'll pick arbitrary n₀, n₁ ∈ ℕ 
where f(n₀) = f(n₁), then prove that n₀ = n₁.

What does it mean for the function f to be
injective?

∀n₀ ∈ ℕ. ∀n₁ ∈ ℕ. ( f(n₀) = f(n₁) → n₀ = n₁ )
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where f(n₀) = f(n₁), then prove that n₀ = n₁.
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Write two different
sentences that could be
the frst sentence of a
Direct Proof approach to
this proof, one for each
of the two definitions of
injective—the “assume”
step. (remember that
direct proof is for
proving theorems that
are implications—in this
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Injective Functions

Theorem: Let f : ℕ → ℕ be defned as f(n) = 2n + 7.
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Proof: Consider any n₁, n₂ ∈ ℕ where f(n₁) = f(n₂). We
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This proof contains no
first-order logic syntax
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Another Class of Functions
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Surjective Functions

● A function f : A → B is called surjective (or
onto) if this frst-order logic statement is true
about f:

∀b ∈ B. ∃a ∈ A. f(a) = b

(“For every output, there's an
input that produces it.”)

● A function with this property is called a
surjection.

● How does this compare to our frst rule of
functions?



  

Surjective Functions

Theorem: Let f : ℝ → ℝ be defned as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = 2y. Then we see that

f(x) = f(2y) = 2y / 2 = y.

So f(x) = y, as required. ■
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What does it mean for f to be surjective?

∀y ∈ ℝ. ∃x ∈ ℝ. f(x) = y

Therefore, we'll choose an arbitrary y ∈ ℝ,
then prove that there is some x ∈ ℝ where
f(x) = y.

What does it mean for f to be surjective?
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Surjective Functions

Theorem: Let f : ℝ → ℝ be defned as f(x) = 2x. Then
f(x) is surjective.

Proof: Consider any y ∈ ℝ. We will prove that there is a
choice of x ∈ ℝ such that f(x) = y.

Let x = y / 2. Then we see that

f(x) = f(y / 2) = 2y / 2 = y.

So f(x) = y, as required. ■
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!! Important style rule !!
This proof contains no
first-order logic syntax

(quantifiers, connectives, etc.).
It’s written in plain English,

just as usual.

!! Important style rule !!
This proof contains no
first-order logic syntax

(quantifiers, connectives, etc.).
It’s written in plain English,

just as usual.



  

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specifc choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.

Pop Quiz!
Which row of this 
proof techniques

table did we use for
for that proof?



  

A Proof About Birds



  

Theorem: If all birds can fy,
then all herons can fy.



  

Theorem: If all birds can fy, then all herons
can fy.

 Given the predicates

Bird(b), which says b is a bird;
Heron(h), which says h is a heron; and
CanFly(x), which says x can fy,

 translate the theorem into frst-order logic.

 Given the predicates

Bird(b), which says b is a bird;
Heron(h), which says h is a heron; and
CanFly(x), which says x can fy,

 translate the theorem into frst-order logic.
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Theorem: If all birds can fy, then all herons
can fy.

Proof: Assume that all birds can fy. We will
show that all herons can fy.

Consider an arbitrary bird b. Since b is a
bird, b can fy. [ and now we’re stuck! we
are interested in herons, but b might not
be one. It could be a hummingbird, for
example! ]
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Theorem: If all birds can fy, then all herons
can fy.

Proof: Assume that all birds can fy. We will
show that all herons can fy.

Consider an arbitrary citril c. We will show
that c can fy. To do so, note that since c is
a citril we know c is a bird. Therefore, by
our earlier assumption, c can fy. ■
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We never introduce a
variable b.

We introduce a variable h 
almost immediately.

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))

Proving vs. Assuming

● In the context of a proof, you will need to
assume some statements and prove others.
● Here, we assumed all birds can fy.
● Here, we proved all herons can fy.

● Statements behave diferently based on
whether you’re assuming or proving them.



  

We never introduce a
variable b.

We introduce a variable h 
almost immediately.

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))

Proving vs. Assuming

● To prove the universally-quantifed statement

∀x. P(x)

we introduce a new variable x representing some
arbitrarily-chosen value.

● Then, we prove that P(x) is true for that variable x.

● That’s why we introduced a variable h in this proof
representing a heron.



  

We never introduce a
variable b.

We introduce a variable h 
almost immediately.

(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))

Proving vs. Assuming

● If we assume the statement

∀x. P(x)

we do not introduce a variable x.

● Rather, if we fnd a relevant value z somewhere else in
the proof, we can conclude that P(z) is true.

● That’s why we didn’t introduce a variable b in our
proof, and why we concluded that h, our heron, can fy.



  

To prove that
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specifc choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.



  

To prove that
this is true…

If you assume
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Find an x where A is true.
Then prove that A is true for

that specifc choice of x.

Assume A is true, then
prove B is true.

Prove A. Then prove B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Prove A → B and B → A.

Simplify the negation, then
consult this table on the result.



  

To prove that
this is true…

If you assume
this is true…

∀x. A
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A ∧ B
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Have the reader pick an
arbitrary x. We then prove A is
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Then prove that A is true for
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Prove A. Then prove B. Assume A. Then assume B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Consider two cases.
Case 1: A is true.
Case 2: B is true.

Prove A → B and B → A. Assume A → B and B → A.

Simplify the negation, then
consult this table on the result.

Simplify the negation, then
consult this table on the result.



  

Connecting Function Types



  

Types of Functions

● We've seen three special types of
functions:
● involutions, functions that undo

themselves;
● injections, functions where diferent inputs

go to diferent outputs; and
● surjections, functions that cover their

whole codomain.

● Question: How do these three classes of
functions relate to one another?



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.



  

Theorem: For any function f : A → A,
if f is an involution, then f is surjective.

(∀x ∈ A. f(f(x)) = x)   →   (∀b ∈ A. ∃a ∈ A. f(a) = b)

f is an
involution.

f is
surjective.
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Proof Outline

 1. Assume f is an involution.
 2. Pick an arbitrary b ∈ A.
 3. Give a choice of a ∈ A where

f(a) = b.



  

Theorem: For any function f : A → A, if f is an
involution, then f is surjective.

Proof: Pick any involution f : A → A. We will prove
that f is surjective. To do so, pick an arbitrary
b ∈ A. We need to show that there is an a ∈ A
where f(a) = b.

Specifcally, pick a = f(b). This means that
f(a) = f(f(b)), and since f is an involution we know
that f(f(b)) = b. Putting this together, we see that
f(a) = b, which is what we needed to show. ■
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injective.
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(∀b. (Bird(b) → CanFly(b)))  →  (∀h. (Heron(h) → CanFly(h)))















  

Theorem: For any function f : A → A,
if f is an involution, then f is injective.

¬

+

☞

≈

⬠

a₁

a₂

?

Proof Outline

 1. Assume f is an involution.
 2. Pick arbitrary a₁, a₂ ∈ A such

that a₁ ≠ a₂.
 3. Prove f(a₁) ≠ f(a₂).
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involution, then f is injective.

Proof: Consider any function f : A → A that’s an
involution. We will prove that f is injective. To do
so, choose any a₁, a₂ ∈ A where a₁ ≠ a₂. We need
to show that f(a₁) ≠ f(a₂).

We’ll proceed by contradiction. Suppose that
f(a₁) = f(a₂). This means f(f(a₁)) = f(f(a₂)), which in
turn tells us a₁ = a₂ because f is an involution. But
that’s impossible, since a₁ ≠ a₂.

We’ve reached a contradiction, so our assumption
was wrong. Therefore,
we see that f(a₁) ≠ f(a₂),
as required. ■
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Function Composition



  
People Places Prices

Keith

Meredith

Siyan

Grant

Cupertino, CA

San Francisco

Redding, CA

Utqiagvik, AK

Far Too Much

A King's Ransom

A Modest Amount

More Than
You’d Expect

Drew
Palo Alto, CA

f : People → Places g : Places → Prices

h : People → Prices
h(x) = g(f(x))



  

Function Composition

● Suppose that we have two functions
f : A → B and g : B → C.

● Notice that the codomain of f is the
domain of g. This means that we can use
outputs from f as inputs to g.

f g
f(x)

 
x
 

g(f(x))
 



  

Function Composition

● Suppose that we have two functions f : A → B and g 
: B → C.

● The composition of f and g, denoted g ∘ f, is a
function where

● g ∘ f : A → C, and
● (g ∘ f)(x) = g(f(x)).

● A few things to notice:
● The domain of g ∘ f is the domain of f. Its codomain

is the codomain of g.
● Even though the composition is written g ∘ f, when

evaluating (g ∘ f)(x), the function f is evaluated frst.

The name of the function is g ∘ f.
When we apply it to an input x,
we write (g ∘ f)(x). I don't know

why, but that's what we do.

The name of the function is g ∘ f.
When we apply it to an input x,
we write (g ∘ f)(x). I don't know

why, but that's what we do.



  

Properties of Composition



  

Theorem: If f : A → B is an injection and g :
B → C is an injection, then the function g ∘ f 

: A → C is an injection.



  

Organizing Our Thoughts



  

f : A → B is an injection.

∀x ∈ A. ∀y ∈ A. (x ≠ y →
 f(x) ≠ f(y)
)

g : B → C is an injection.

∀x ∈ B. ∀y ∈ B. (x ≠ y →
 g(x) ≠ g(y)
)

g ∘ f is an injection.

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ →
(g ∘ f)(a₁) ≠ (g ∘ f)(a₂)

)

Theorem: If f : A → B is an injection and
g : B → C is an injection, then the function

g ∘ f : A → C is an injection.

What We’re Assuming What We Need to Prove

We’re assuming these
universally-quantified

statements, so we won’t
introduce any variables

for what’s here.

We’re assuming these
universally-quantified

statements, so we won’t
introduce any variables

for what’s here.

We need to prove
this universally-

quantified statement.
So let’s introduce
arbitrarily-chosen

values.

We need to prove
this universally-

quantified statement.
So let’s introduce
arbitrarily-chosen

values.



  

g ∘ f is an injection.

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ →
(g ∘ f)(a₁) ≠ (g ∘ f)(a₂)

)

Theorem: If f : A → B is an injection and
g : B → C is an injection, then the function

g ∘ f : A → C is an injection.

What We’re Assuming What We Need to Prove

We need to prove
this universally-

quantified statement.
So let’s introduce
arbitrarily-chosen

values.

We need to prove
this universally-

quantified statement.
So let’s introduce
arbitrarily-chosen

values.

f : A → B is an injection.

∀x ∈ A. ∀y ∈ A. (x ≠ y →
 f(x) ≠ f(y)
)

g : B → C is an injection.

∀x ∈ B. ∀y ∈ B. (x ≠ y →
 g(x) ≠ g(y)
)

a₁ ∈ A is arbitrarily-chosen.

a₂ ∈ A is arbitrarily-chosen.



  

g ∘ f is an injection.

∀a₁ ∈ A. ∀a₂ ∈ A. (a₁ ≠ a₂ →
(g ∘ f)(a₁) ≠ (g ∘ f)(a₂)

)

Theorem: If f : A → B is an injection and
g : B → C is an injection, then the function
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Theorem: If f : A → B is an injection and g : B → C is an
injection, then the function g ∘ f : A → C is also an
injection.

Proof: Let f : A → B and g : B → C be arbitrary injections. We
will prove that the function g ∘ f : A → C is also injective.
To do so, consider any a₁, a₂ ∈ A where a₁ ≠ a₂. We will
prove that (g ∘ f)(a₁) ≠ (g ∘ f)(a₂). Equivalently, we need to
show that g(f(a₁)) ≠ g(f(a₂)).

Since f is injective and a₁ ≠ a₂, we see that f(a₁) ≠ f(a₂). 
Then, since g is injective and f(a₁) ≠ f(a₂), we see that
g(f(a₁)) ≠ g(f(a₂)), as required. ■
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Great exercise: Repeat
this proof using the other
definition of injectivity.

Great exercise: Repeat
this proof using the other
definition of injectivity.



  

Major Ideas From Today

● Statements behave diferently based on whether
you’re assuming or proving them.

● When you assume a universally-quantifed
statement, initially, do nothing. Instead, keep an
eye out for a place to apply the statement more
specifcally.

● When you prove a universally-quantifed
statement, pick an arbitrary value and try to prove
it has the needed property.

● As always: try concrete examples, draw pictures,
etc. before you dive into writing a proof.



  

To prove that
this is true…

If you assume
this is true…

∀x. A

∃x. A

A → B

A ∧ B

A ∨ B

A ↔ B

¬A

Have the reader pick an
arbitrary x. We then prove A is

true for that choice of x.

Initially, do nothing. Once you
fnd a z through other means,

you can state it has property A.

Find an x where A is true.
Then prove that A is true for

that specifc choice of x.

Introduce a variable
x into your proof that

has property A.

Assume A is true, then
prove B is true.

Initially, do nothing. Once you
know A is true, you can
conclude B is also true.

Prove A. Then prove B. Assume A. Then assume B.

Either prove ¬A → B or
prove ¬B → A.

(Why does this work?)

Consider two cases.
Case 1: A is true.
Case 2: B is true.

Prove A → B and B → A. Assume A → B and B → A.

Simplify the negation, then
consult this table on the result.

Simplify the negation, then
consult this table on the result.



  

Next Time

● Cardinality Revisited
● Formalizing our defnitions.

● The Nature of Infnity
● Infnity is more interesting than it looks!

● Cantor’s Theorem Revisited
● Formally proving a major result.



  

Extra Slides

(The following is a proof of a theorem just like the
one we just did with injection, but with surjection.)



  

Theorem: If f : A → B is a surjection and
g : B → C is a surjection, then the function

g ∘ f : A → C is a surjection.



  

Theorem: If f : A → B is surjective and g : B → C is surjective,
then g ∘ f : A → C is also surjective.

Proof: Let f : A → B and g : B → C be arbitrary surjections.
We will prove that the function g ∘ f : A → C is also
surjective. To do so, we will prove that for any c ∈ C, there
is some a ∈ A such that (g ∘ f)(a) = c. Equivalently, we
will prove that for any c ∈ C, there is some a ∈ A such that
g(f(a)) = c.

Consider any c ∈ C. Since g : B → C is surjective, there is
some b ∈ B such that g(b) = c. Similarly, since f : A → B is
surjective, there is some a ∈ A such that f(a) = b. This
means that there is some a ∈ A such that

g(f(a)) = g(b) = c,

which is what we needed to show. ■
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What does it mean for g ∘  f : A →  C to be surjective?

∀c ∈ C. ∃a ∈ A. (g ∘ f)(a) = c

Therefore, we'll choose arbitrary c ∈  C and prove that there
is some a ∈  A such that (g ∘  f)(a) = c.

What does it mean for g ∘  f : A →  C to be surjective?

∀c ∈ C. ∃a ∈ A. (g ∘ f)(a) = c

Therefore, we'll choose arbitrary c ∈  C and prove that there
is some a ∈  A such that (g ∘  f)(a) = c.
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